If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19k^2+10k=0
a = 19; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·19·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*19}=\frac{-20}{38} =-10/19 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*19}=\frac{0}{38} =0 $
| 8(2x+4)=-16 | | 4(-5n-4)=144 | | 17+5x=9x-7 | | 225-x2=0 | | 4(8k-5)=140 | | g/5=16 | | 8a-7-5=-12 | | -3(5-5m)-4=101 | | –3(q–16)=18 | | -4a+8(-5a+2)=368 | | 2x-2(5x-4)=4(-x+1) | | 15x=5x-40 | | 14n,n=3 | | 7(2x+5)-11x-29=-9 | | -5(6x+7)-4=-249 | | 4(-3p-5)=-116 | | 8x-2(4x-1)=26 | | 4(-8k-1)=156 | | 7+3(1+7m)=178 | | t5=19 | | 2w+9=7w-2 | | 3(u−70)=69 | | w/15=3 | | -40+6n=5(8n-8 | | 9x-8=4X=3 | | 12-x/5=-18 | | a+4.2=7.8 | | -5x+19=3x+11 | | -7(-2r-4)=-3r-40 | | 3n-18=10 | | m+7/6=5 | | 6+3=c |